10.15480/882.2005
Anatzki, Jürgen
Jürgen
Anatzki
Gronwald, Frank
Frank
Gronwald
115015434
Accelerating the numerical computation of indirect lightning effects by means of vector fitting
U.R.S.I.-Landesausschuss in der Bundesrepublik Deutschland e.V.
2011
620: Ingenieurwissenschaften
620
TUHH Universitätsbibliothek
TUHH Universitätsbibliothek
2019-02-15
2019-02-15
2011-08-01
en
Journal Article
Advances in Radio Science (9): 323-328 (2011-08-08)
1684-9965
http://hdl.handle.net/11420/2008
urn:nbn:de:gbv:830-882.026309
10.15480/882.2005
by
In the context of numerical computation of indirect lightning effects it is customary to use volume-discretizing methods in time domain, such as the Finite Difference Time Domain (FDTD) method, the Finite Integration Technique (FIT), or the Transmission Line Matrix (TLM) method. If standard lightning electromagnetic pulses (LEMPs) of tenths of microseconds duration are used as excitations, these methods require long computation times, as implied by the Courant criterion. It is proposed to use shorter pulse forms and to compare the transfer functions obtained by different pulse durations by means of macromodels that are obtained from the vector fitting method. Numerical computation of lightning related transfer functions of a canonical structure indicate that the duration of the exciting pulse can typically be shortened by at least one order of magnitude if compared to a standard pulse. © 2011 Author(s) CC Attribution 3.0 License.