\nflow through a porous media due to a permeable stretching sheet with

\nmagnetic field, viscous dissipation, chemical reaction and Soret

\neffects are numerically investigated. Two types of nanofluids, namely

\nCu-water and Ag-water were studied. The governing boundary layer

\nequations are formulated and reduced to a set of ordinary differential

\nequations using similarity transformations and then solved

\nnumerically using the Keller box method. Numerical results are

\nobtained for the skin friction coefficient, Nusselt number and

\nSherwood number as well as for the velocity, temperature and

\nconcentration profiles for selected values of the governing

\nparameters. Excellent validation of the present numerical results has

\nbeen achieved with the earlier linearly stretching sheet problems in

\nthe literature.", "descriptionType": "Abstract" }, { "description": "{\"references\": [\"L. J. Crane, Flow past a stretching plate, Z Angew. Math. Phys. (ZAMP)\\n21(1970) 645 -647.\", \"L. E. Erickson, L. T. Fan and V. G. Fox, Heat and mass transfer on a\\nmoving continuous flat plate with suction or injection, Ind. Eng. Chem.\\nFundam. 5(1966)19 - 25.\", \"L. G. Grubka, K.M. Bobba, Heat transfer characteristics of a continuous\\nstretching surface with variable temperature, ASME J. Heat Transfer\\n107 (1985) 248250.\", \"C.-H. Chen, Laminar mixed convection adjacent to vertical,\\ncontinuously stretching sheets, Heat Mass Transfer 33(1998)471 - 476.\", \"E. M. Abo-Eldahab, M.A. El-Aziz, Blowing/suction effect on\\nhydromagnetic heat transfer by mixed convection from an inclined\\ncontinuously stretching surface with internal heat generation/absorption,\\nInt. J. Therm. Sci. 43(2004)709 - 719.\", \"P. Ganesan, G. Palani, Finite difference analysis of unsteady natural\\nconvection MHD flow past an inclined plate with variable surface heat\\nand mass flux, Int. J. of Heat and Mass Transfer, 47(19-20)(2004) 4449-\\n4457.\", \"K. Jafar, R. Nazar, A. Ishak, I. Pop, MHD flow and heat transfer over\\nstretching/shrinking sheets with external magnetic field, viscous\\ndissipation and Joule Effects, Can. J. Chem. Eng. 9999 (2011) 111.\", \"M.A.A. Hamada, I. Pop, A.I. Md Ismail, Magnetic field effects on free\\nconvection flow of a nanofluid past a vertical semi-infinite flat plate,\\nNonlinear Anal. Real World Appl. 12 (2011) 1338-1346.\", \"K.V. Prasad, D. Pal, V. Umesh, N.S. Prasanna Rao, The effect of\\nvariable viscosity on MHD viscoelastic fluid flow and heat transfer over\\na stretching sheet, Commun. Nonlinear Sci. Numer. Simul. 15 (2) (2010)\\n331-334.\\n[10] A. Beg, A.Y. Bakier, V.R. Prasad, Numerical study of free convection\\nmagnetohydrodynamic heat and mass transfer from a stretching surface\\nto a saturated porous medium with Soret and Dufour effects, Comput.\\nMater. Sci. 46 (2009) 57-65.\\n[11] T. Fang, J. Zhang, S. Yao, SlipMHD viscous flow over a stretching\\nsheet an exact solution, Commun. Nonlinear Sci. Numer. Simul. 14 (11)\\n(2009) 3731- 3737.\\n[12] T. Fang, J. Zhang, S. Yao, Slip magnetohydrodynamic viscous flow over\\na permeable shrinking sheet, Chin. Phys. Lett. 27 (12) (2010)124702.\\n[13] Einstein, A., Ann. phys., 19, 286(1906); Ann. Phys., 34, 591(1911).\\n[14] K. Vajravelu, A. Hadjinicolaou, Heat transfer in a viscous fluid over a\\nstretching sheet with viscous dissipation and internal heat generation,\\nInt. Commun. in Heat and Mass Transfer, 20(3) (1993)417-430.\\n[15] T. G.Motsumi, O. D.Makinde, Effects of thermal radiation and viscous\\ndissipation on boundary layer flow of nanofluids over a permeable\\nmoving flat plate, Phys. Scr. 86 (2012) 045003 (8pp).\\n[16] B. Gebhart, Effect of viscous dissipation in natural convection, J. Fluid\\nMech. 14 (1962) 225232.\\n[17] B. Gebhart, J. Mollendorf, Viscous dissipation in external natural\\nconvection flows, J. Fluid Mech. 38(1969) 97107.\\n[18] A. Javad, S. Sina, viscous flow over nonlinearly stretching sheet with\\neffects of viscous dissipation, J. Appl. Math. (2012)110. ID 587834.\\n[19] M. Habibi Matin, M. Dehsara, A. Abbassi, Mixed convection MHD\\nflow of nanofluid over a non-linear stretching sheet with effects of\\nviscous dissipation and variable magnetic field, MECHANIKA,\\nVol.18(4) (2012) 415-423.\\n[20] F. Khani, A. Farmany, M. Ahmadzadeh Raji, Abdul Aziz, F. Samadi,\\nAnalytic solution for heat transfer of a third grade viscoelastic fluid in\\nnon-Darcy porous media with thermophysical effects,Commun\\nNonlinear Sci Numer Simulat 14(2009) 38673878.\\n[21] M. H. Yazdi, S. Abdullah, I. Hashim, A. Zaharim, K. Sopian, Entropy\\nGeneration Analysis of the MHD Flow over Nonlinear Permeable\\nStretching Sheet with Partial Slip, IASME/WSEAS Energy &\\nenvironment (6)(2011) 292-297.\\n[22] Gupta PS, Gupta AS. Heat and mass transfer on a stretching sheet with\\nsuction or blowing. Can J.Chem Eng. 1977;55:7446.\\n[23] Vajravelu K. Hydromagnetic flow and heat transfer over a continuous,\\nmoving, porous, flat surface. Acta Math 1986;64:17985.\\n[24] Chen C.K, Char M. Heat transfer of a continuous stretching surface with\\nsuction or blowing, J. Math. Anal Appl. 1988;135:56880.\\n[25] Chaudhary MA, Merkin JH, Pop I. Similarity solutions in the free\\nconvection boundary layer flows adjacent to vertical permeable surface\\nin porous media. Eur J Mech B/Fluids 1995; 14:21737.\\n[26] Magyar E, Keller B. Exact solutions for self-similar boundary layer\\nflows induced by permeable stretching wall. Eur J Mech BFluids 2000;\\n19:10922.\\n[27] A.J. Chamka, MHD flow of a uniformly stretched vertical permeable\\nsurface in the presence of heat generation/absorption and a chemical\\nreaction, Int. Commun. Heat Mass Transfer 30 (2003) 413-422.\\n[28] A. Afifi, MHD free convective flow and mass transfer over a stretching\\nsheet with chemical reaction, J. Heat and Mass Transfer 40 (2004)\\n495500.\\n[29] A. Postelnicu, Influence of chemical reaction on heat and mass transfer\\nby natural convection from vertical surfaces in porous media considering\\nSoret and Dufour effects, J. Heat and Mass Transfer 43(2007) 595602.\\n[30] R. Kandasamy, P.G. Palanimani, Effects of chemical reactions, heat, and\\nmass transfer on nonlinear magnetohydrodynamic boundary layer flow\\nover a wedge with a porous medium in the presence of ohmic heating\\nand viscous dissipation, J. Porous Media 10 (2007) 489502.\\n[31] K. Sarit, Das SUSC, Yu. Wenhua, T. Pradeep, Nanofluids Science and\\nTechnology. 1 edition, Hon-boken, NJ, John Wiley & Sons, Inc, 2007.\\n[32] J. Buongiorno, (March 2006), Convective Transport in Nanofluids,\\nJournal of Heat Transfer (ASME) 128 (3) (2010) 240.\\n[33] W. Yu, D.M. France, J. L. Routbort, and S. U. S. Choi, Review and\\nComparison of Nanofluid Thermal Conductivity and Heat Transfer\\nEnhancements, Heat Transfer Eng., 29(5) (2008) 432-460 (1).\\n[34] H.U. Kang, S.H. Kim, J.M. Oh, Estimation of thermal conductivity of\\nnanofluid using experimental effective particle volume, Exp. Heat\\nTransfer 19 (3) (2006)181191.\\n[35] V. Velagapudi, R.K. Konijeti, C.S.K. Aduru, Empirical correlation to\\npredict thermophysical and heat transfer characteristics of nanofluids,\\nTherm. Sci. 12 (2) (2008) 2737.\\n[36] V.Y. Rudyak, A.A. Belkin, E.A. Tomilina, On the thermal conductivity\\nof nanofluids, Tech. Phys.Lett. 36(7) (2010) 660662.\\n[37] H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alteration of thermal\\nconductivity and viscosity of liquid by dispersing ultra-fine particles,\\nNetsu Bussei 7 (1993) 227233.\\n[38] J. Buongiorno, W. Hu, Nanofluid coolants for advanced nuclear power\\nplants. Proceedings of ICAPP 05: May 2005 Seoul. Sydney: Curran\\nAssociates, Inc, (2005)15-19.\\n[39] J. Buongiorno, Convective transport in nanofluids. ASME J Heat Transf,\\n128(2006)240-250.\\n[40] W. A. Khan, Pop I., Free convection boundary layer flow past a\\nhorizontal flat plate embedded in a porous medium filled with a\\nnanofluid, J. Heat Transfer, vol. 133(2011)9.\\n[41] O.D. Makinde, Aziz A., MHD mixed convection from a vertical plate\\nembedded in a porous medium with a convective boundary condition,\\nInt. J. of Thermal Sci., 49(2010)1813-1820.\\n[42] H. B. Keller, A new difference scheme for parabolic problems:\\nNumerical solutions of partial differential equations, II (Hubbard, B.\\ned.), New York: Academic Press, (1971)327350.\\n[43] H.F. Oztop, E. Abu-Nada, Numerical study of natural convection in\\npartially heated rectangular enclosures filled with nanofluids, Int. J. Heat\\nFluid Flow 29 (2008) 13261336.\\n[44] P.K. Kameswaran, S. Shaw, P. Sibanda, P.V.S.N. Murthy,\\nHomogeneous- heterogeneous reactions in a nanofluid flow due to a\\nporous stretching sheet, Int. J. of Heat and Mass Transfer 57 (2013) 465-\\n472.\\n[45] R.K. Tiwari, M.N. Das, Heat tranfer augmentation in a two sided lid\\ndriven differentially heated square cavity utilizing nanofluids, Int. J.\\nHeat Mass Transfer 50 (2007) 2002-2018.\\n[46] S. Ahmad, A. M. Rohni, I. Pop, 2011, Blasius and Sakiadis problems in\\nnanofluids, Acta Mech. 218(2011) 195204.\\n[47] T. Cebeci, P.Pradshaw, Physical and Computational Aspects of\\nConvective Heat Transfer, New York:Springer, 1988.\\n[48] M.A.A. Hamad, Analytical solution of natural convection flow of a\\nnanofluid over a linearly stretching sheet in the presence of magnetic\\nfield, Int. Commun. Heat Mass Transfer 38 (2011) 487492.\"]}", "descriptionType": "Other" } ], "geoLocations": [], "fundingReferences": [], "relatedIdentifiers": [ { "relationType": "IsVersionOf", "relatedIdentifier": "10.5281/zenodo.1100520", "relatedIdentifierType": "DOI" } ], "schemaVersion": "http://datacite.org/schema/kernel-4", "providerId": "cern", "clientId": "cern.zenodo", "agency": "datacite", "state": "findable" }